
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Crossover from nonclassical to classical chemical kinetics in an initially separatedA¿B^C
reaction-diffusion system with arbitrary diffusion constants

Misha Sinder and Joshua Pelleg
Department of Materials Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

~Received 6 December 1999!

The asymptotic long-time properties of the reaction front formed in a reversible reaction-diffusion process
A1B↔C with initially separated reactants are investigated. The case of arbitrary nonzero values of the
diffusion constantsDA ,DB ,DC of the componentsA,B,Cand the initial concentrationsa0 andb0 of A andB
is considered. The system is studied in the limit ofg→0, whereg is the backward reaction rate constant. In
accordance with previous work, the dynamics of the reaction front is described as a crossover between the
‘‘irreversible’’ regime at timest!g21 and the ‘‘reversible’’ regime at timest@g21. It is shown that through
this crossover the macroscopic properties of the reaction front, such as the global rate ofC production, the
motion of the reaction zone center, and the concentration profiles of the components outside the reaction front,
are unchanged. The concentration profiles of the components inside the reaction zone are described by quasi-
static equations. The results of the theoretical consideration are confirmed by computing the mean-field kinetics
equations.

PACS number~s!: 82.20.Wt, 82.20.Mj, 05.40.2a
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I. INTRODUCTION

The reaction front formed in anA1B→C reaction-
diffusion system with initially separated reactants is of gr
interest since it represents a pattern for a wide class of
cesses in physics, chemistry, and biology@1–3#. The possi-
bility of testing the theoretical predictions by experimen
studies in this system is also important. Since the article
Gálfi and Rácz @4# much work has been devoted to studyi
this problem by different approaches@5–28#. The main in-
terest in these studies was concentrated on the spatiote
ral behavior of the reactantsA andB and on the production
rate ofC. C is usually assumed to be motionless. The t
ditional approach is to consider a system of partial differ
tial equations for the mean local concentrationsrA(x,t) and
rB(x,t), which contain the macroscopic reaction rateR(x,t)
@4#. Some techniques have been developed to study t
equations, for the cases of space dimensiond.dc52, when
the mean-field expressionR}rArB is valid, and ford<dc ,
when the explicit form ofR is unknown @23,16,25–27#.
These techniques consider the asymptotic long-time limi
the reaction-diffusion system and include renormalizat
group analysis@26–28#, the scaling ansatz@4,24#, the quasi-
stationary approximation@13,23#, and the approach deve
oped by Koza@11#.

According to the scaling ansatz@4#, the long-time behav-
ior of the reaction-diffusion system inside the reaction zo
may be represented in the form

rA~x,t !5hAt2gASAS x2xf~ t !

w~ t ! D , ~1!

rB~x,t !5hBt2gBSBS x2xf~ t !

w~ t ! D , ~2!

R5hRt2gRSRS x2xf~ t !

w~ t ! D , ~3!
PRE 611063-651X/2000/61~5!/4935~8!/$15.00
t
o-

l
f

po-

-
-

se

f
n

e

whereSA , SB , andSR are some scaling functions,xf}t1/2 is
the point where the reaction rateR has a maximum value
w(t)}ta!t1/2 is the width of the reaction zone,hA , hB , and
hR are some parameters independent ofx and t, and the
exponentsa, gA , gB , andgR are some positive constant
The values ofa5 1

6 , gA5gB5 1
3 , gR5 2

3 were obtained in
the mean-field approximation for the nonzero diffusion co
stantsDA andDB . The values ofa, gA , gB , andgR and the
form of SA , SB , andSR do not depend onDA andDB and
the initial concentrationsa0 and b0 if the values of these
parameters are nonzero@4,26,27,14,11#.

In the quasistationary approximation@13,23#, it is as-
sumed that for sufficiently long times the front reaction
described by two characteristic time scales. One time sc
tJ}@d(ln J)/dt#21}t, determines the rate of change in the d
fusive currentJ5JA5JB of the reactantsA andB arriving at
the reaction zone. The second time scale,tF}w2/D}t2a, is
the equilibration time of the reaction front. Fora, 1

2 ,
tF /tJ→0 as t→`, i.e., the reaction in the reaction zon
quickly converges to the currents of the reactants. IfDA and
DB are nonzero, the asymptotic forms ofrA and rB inside
the reaction zone are described by simple quasistatic e
tions. The characteristic feature of the quasistatic equat
is that they include time only as a parameter, through
time-dependent boundary currentsJA5JB5J. The depen-
dence ofJ on t, DA , DB , a0 , and b0 may be determined
analytically @11#.

Recently, Koza applied the quasistationary approximat
to the investigation of the asymptotic properties of the s
tem outside the reaction zone@11#. Without knowing the
concrete form ofR, in the framework of a few physically
based assumptions, controlled by simulation or experim
tally, many interesting quantities were determined exactly
a function of the external parametersDA , DB , a0 , andb0 .
In particular, the existence of long-time limits ofxf(t), J(t),
and R(t) was shown, i.e., ast→`, xf(t)/At→Cf , J(t)At
→CJ , and R(t)At→CJ . Here R(t) is the global reaction
rate ofC production. The valueCf can be computed from the
equations
4935 ©2000 The American Physical Society
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FS 2Cf

2ADA
D 5

a0ADA

b0ADB

FS Cf

2ADB
D , ~4!

F~x![@12erf~x!#exp~x2!, ~5!

where erf(x)[2p21/2*0
x exp(2h2)dh is the error function.

CJ can be calculated from the expressions

CA5a0 /@erf~Cf /2ADA!11#, ~6!

CB52b0 /@erf~Cf /2ADB!21#, ~7!

CJ5CAADA /p exp~2Cf
2/4DA!

5CBADB /p exp~2Cf
2/4DB!. ~8!

The constantsCA and CB control the form ofrA and rB
outside the reaction zone. Forx!xf2w,

rA~x,t !5a02CA@erf~x/A4DAt !11#, ~9!

and forx@xf1w,

rB~x,t !5b01CB@erf~x/A4DBt !21#. ~10!

A major part of the works@4–6,8–21,23–28# was con-
cerned with the irreversible reactionA1B→C, but com-
monly the chemical reactions are reversible at sufficien
large time. In Refs.@22,29# the case of the reversible reactio
A1B↔C with initially separated reactants was studied
long timest→` and for small values ofg, whereg is the
backward reaction rate constant. It was established that
dynamics of the front can be described in terms of a cro
over between the ‘‘irreversible’’ regime at timesgt!1 and
the ‘‘reversible’’ regime at timesgt@1 @22#. In the ‘‘irre-
versible’’ regime, the front dynamics coincides with tho
predicted by Ga´lfi and Rácz @4#. In the ‘‘reversible’’ regime,
a local equilibrium at the reaction front exists, and only t
diffusion process governs the dynamics. It was establis
that the concentrationsA, B, and C near the reaction zon
may be described in the form of Eqs.~1!–~3! with the expo-
nentsgA , gB , gC , andgR equal to zero, whereas the rea
tion front width w given by w;t1/2 is independent of the
space dimension@22#.

In Ref. @29# the refined rate ofC production Rr(x,t),
including forward and backward reactions, was studied
the basis of the mean-field equations for mobileC. It was
shown that the reversible regime (gt@1) is characterized by
scaling of the local rate ofC production asRr local

;t21 and

by scaling of the global rate ofC production asRr global

;t21/2. Furthermore, a surprising property was observed
the crossover from the ‘‘irreversible’’ to the ‘‘reversible
regime, namely, that the macroscopic properties of
reaction-diffusion process, such as the time dependenc
the global rate ofC production and the distributions of th
components, are unchanged outside the reaction fron
Ref. @29# only the specific case of equal diffusion consta
of A, B, andC and equal initial concentrations of the rea
tants was considered. It was assumed, similarly to the i
versible reaction case@4#, that the equality of the diffusion
constants and the initial reactant concentrations does no
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fect the scaling exponents. On the other hand, it is not c
whether under more general conditions the macrosco
properties of the crossover remain unaltered.

The objective of this work is to study fort→` and g
→0 the crossover from the irreversible (gt!1) to the re-
versible (gt@1) regime with arbitrary nonzero diffusion
constants and with arbitrary initial reactant concentratio
The analysis will be performed in the framework of Koza
approach@11#, extended to the case of the reversibleA
1B↔C reaction. It will be supplemented by numerical an
analytical computations of the equations in the mean-fi
approximation.

The paper is organized as follows. In the next section
analysis of the limiting cases of the irreversible and reve
ible regimes and the crossover from one to the other is p
sented. The behavior of the system in the case of a
reaction zone is studied numerically and analytically on
basis of the mean-field kinetic equations in Sec. III. Sect
IV is devoted to the reversible regime when the react
occurs in a wide region. Section V summarizes the result
our work.

II. IRREVERSIBLE AND REVERSIBLE REGIMES
AND THE CROSSOVER BETWEEN THEM

The reversible reaction-diffusion systemA1B↔C is de-
scribed by the following equations@22#:

]rA

]t
5DA

]2rA

]x2 2R1grC ,

]rB

]t
5DB

]2rB

]x2 2R1grC , ~11!

]rC

]t
5DC

]2rC

]x2 1R2grC ,

with the initial state given by

rA~x,t50!5a0H~2x!; rB~x,t50!5b0H~1x!;

rC~x,t50!50, ~12!

whererA , rB , rC , DA , DB , andDC are the local concen
trations and diffusion constants ofA, B, andC, respectively.

For times ofgt!1, we havegrC!]rC /]t and therefore
the backward reaction term in Eqs.~11! may be neglected
@22#, resulting in

]rA

]t
5DA

]2rA

]x2 2R,

]rB

]t
5DB

]2rB

]x2 2R, ~13!

]rC

]t
5DC

]2rC

]x2 1R.

Let us begin with the behavior of the reaction-diffusio
system~12! and ~13! at asymptotically long times oft→`,
following Koza’s approach with our modification, whic
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takes into account the nonzero diffusion constant ofC. Our
modification does not change the basic line of Koza’s c
sideration @11#. We shall discuss only some key point
which are essential for further use.

The long-time limit properties of the reaction-diffusio
system will be deduced in the light of a few physical a
sumptions, which were comprehensively discussed and v
fied by Koza@11#.

~i! R, the production rate ofC, attains its maximal value a
point xf(t). There is a point x0 where DArA(x0 ,t)
5DBrB(x0 ,t). At asymptotically long timest→`, xf(t)
'x0(t) @11#.

~ii ! The reaction occurs mainly in a regionux2xf u
;w(t);ta, where 0,a, 1

2 . Outside this region, atx!xf
2w, we haverA ,rC@rB , and atx@xf1wrB ,rC@rA is
obtained.

~iii ! The dynamics ofrA andrC in the regionx!xf2w
may be described by Eqs.~9! and ~14!:

rC~x,t !5CC1@erf~x/A4DCt !11#, ~14!

whereCA andCC1 are constants. Forx@xf1w the dynam-
ics of rB andrC may be described by Eqs.~10! and ~15!:

rC~x,t !52CC2@erf~x/A4DCt !21#, ~15!

whereCB andCC2 are constants.
~iv! The quasistatic approximation@i.e., when the left

sides of Eqs.~13! are neglected# is true in the region
2(DAt)1/2!x!(DBt)1/2. These quasistatic equations a
supplemented by the following boundary conditions:

DA]rA /]x→2JA~ t !, rB→0, DC]rC /]x→JC1~ t !,

x→2`,

rA→0, DB]rB /]x→JB~ t !, DC]rC /]x→2JC2~ t !,

x→1`, ~16!

whereJA(t), JB(t), JC1(t), andJC2(t) are some functions
describing the currents of the componentsA, B, andC, re-
spectively, toward the reaction zone.

With these assumptions the solution of Eq.~13! is reduced
to solutions of more simple solvable equations. The regi
in which these simple solutions are valid overlap and t
enables them to merge into a complete solution. In particu
from assumption~ii ! it follows that the reaction proceed
only inside a thin zone, while outside this zone independ
diffusion of the components occurs. Therefore, the conc
tration profiles outside the reaction zone may be calcula
by standard diffusion equations as presented in assump
~iii !. Note that these forms ensure that the concentration
its for x→6` implied by the initial conditions~16! are ful-
filled. For example, limrC50 if x→6`.

From the quasistatic equations linear expressions inx can
be obtained in the region2(DAt)1/2!x!(DBt)1/2 according
to assumptions~i! and ~iv! as given by

DArA1DCrC'J1~ t !@x2x0~ t !#1C~ t !, ~17!

DBrB1DCrC'J2~ t !@x2x0~ t !#1C~ t !. ~18!
-
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J1(t), J2(t), andC(t) are some time functions, which ar
related to the functions from the boundary conditions~16! by
JA(t)5JB(t)5J(t)5J2(t)2J1(t), JC15J2(t), and JC25
2J1(t). On the other hand, assumption~iii ! determines ex-
pressions~9! and~14! for rA andrC in regionx!xf2w. By
coordinating expressions~9! and~14! with Eqs.~17! and~18!
and applying the same analysis forrB andrC in the region
x@xf1w, Eqs. ~4!–~10!, ~19!, and ~20! are obtained for
computation of the constantsCf , CJ , CJ1 , CJ2 , CA , CB ,
CC1 , andCC2 :

CC15CJAp/4DCFS Cf

2ADC
D ,

CC25CJAp/4DCFS 2Cf

2ADC
D , ~19!

CJ1520.5CJF11erfS Cf

2ADC
D G ,

CJ250.5CJF12erfS Cf

2ADC
D G . ~20!

Cf , CJ , CJ1 , andCJ2 are constants that determine the lon
time behavior of the reaction front coordinatexf and the
currents to the reaction front of the componentsJ(t)
5J2(t)2J1(t), J1(t), and J2(t) by the following expres-
sions: limxf(t)/At→Cf , lim J(t)At→CJ , lim J1(t)At

→CJ1 , and limJ2(t)At→CJ2 . The constantsCA , CB ,
CC1 , and CC2 are related to the form of the concentratio
profiles outside the reaction zone. The functionC from Eqs.
~17! and ~18! does not depend on the time and is given b

C5DCCC1FerfS Cf

2ADC
D 11G

5DCCC2F2erfS Cf

2ADC
D 11G . ~21!

Our analysis is extended as compared to the work of K
@11# by taking into account the diffusion of the productC.
Outside the reaction zone,C diffuses independently of the
reactantsA andB, and therefore theC profiles can be calcu-
lated on the basis of the diffusion equation]rC /]t
5DC]2rC /]x2. The form of theC profile outside the reac
tion zone is shown in Fig. 1. It describes the exit ofC from
the moving reaction zone. The break in theC profile near the
reaction front is related to the production ofC in this zone.

For times ofgt@1 andt→` the system reaches a state
local equilibrium, R(x,t)5grC(x,t), and Eqs.~11! trans-
form to reversible regime equations@29,30# given as

052R1grC ,
~22!

]rA

]t
1

]rC

]t
5DA

]2rA

]x2 1DC

]2rC

]x2 ,
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]rB

]t
1

]rC

]t
5DB

]2rB

]x2 1DC

]2rC

]x2 .

Equations~22! describe the correlated diffusion of the com
ponents in the ‘‘reversible’’ regime, but they are not equiv
lent. Whereas the first equationR(x,t)5grC(x,t) is valid
only asymptotically fort→`, the second and the third equ
tions are precise. These two equations can be obtained
Eq. ~11! by adding the first and second equations to the th
one, respectively.

Calculation of the refined rate ofC production,Rr[R
2grC , cannot be performed directly from Eqs.~22!. It can
be calculated by substituting the solution of Eqs.~22! into
any of the original equations~11! @29# resulting in

Rr5DA

]2rA

]x2 2
]rA

]t
,

Rr5DB

]2rB

]x2 2
]rB

]t
, ~23!

Rr5DC

]2rC

]x2 1
]rC

]t
.

This substitution is equivalent to the second step of the p
turbation theory on a large time scale@29#.

Consider the behavior of the reaction systemA1B↔C in
the reversible regime assuming thatg→0 @30#. In this case
the dynamic equilibrium of the reactionA1B↔C sharply
shifts to the right, namely, the direct reactionA1B→C is
preferential to the backward reactionA1B←C, and in most
points along thex axis only componentsA andC or B andC
exist, i.e., rA ,rC@rB or rB ,rC@rA . There exists a thin
zone whererA>rB and the production ofC is concentrated
only in this place, while in other regions independent diff
sion of the components occurs. The reaction zone widthw,
evaluated on the basis of Eqs.~22! in the mean-field approxi-
mation @29,30#, has a scalingw;Agt if g→0. As in the
irreversible regime, the relation between the characteri
times tJ and tF can be written in the reversible regime
tF;w2/D;tg!tJ;@d(ln J)/dt#21;t. The relation tF /tJ
→0 if g→0 is also valid when the dependence ofw on g has

FIG. 1. The form of theC profile calculated on the basis of Eq
~14!, ~15!, and~19! given in arbitrary units ofrC andx. The dashed
line marks the region near the reaction front;xf , where the above
equations cannot be applied.
-

m
d

r-

-

ic

a more general form, i.e.,w;t1/2gb, whereb is some posi-
tive constant. This relation~as in the irreversible regime!
justifies the simplified quasistatic equations in the reg
2(DBt)1/2!x!(DAt)1/2, where the local equilibrium rela
tion R5grC is used. The equations are

052R1grC ,

05DA

]2rA

]x2 1DC

]2rC

]x2 , ~24!

05DB

]2rB

]x2 1DC

]2rC

]x2 .

Let us replace assumptions~i!, ~ii !, and ~iv! of the irre-
versible case by the modified assumptions~i-m!, ~ii-m!, and
~iv-m! given below for the reversible case: in assumpti
~i-m! the rate ofC production,R, is changed to the refined
rate of C production,Rr ; in assumption~ii-m! the depen-
dencew;ta is replaced byw(t);t1/2gb, whereb is a posi-
tive constant; in assumption~iv-m! the quasistatic equation
of the irreversible reaction are replaced by the quasist
equations of the reversible reaction~24!. On the basis of
these assumptions the analysis performed for the irrevers
regime (gt!1) can be repeated without variations for th
reversible regime (gt@1), provided the limitg→0 is added
to the limit t→`. This is based on the analogy between t
two regimes. Thus we can make the following statement

~a! The linear dependence onx of DArA1DCrC and
DBrB1DCrC is a consequence of the modified quasista
equations~24!. This dependence is the same as in the ir
versible regime@see Eqs.~17! and ~18!#.

~b! Outside the reaction zone the concentration profi
have the same form because assumption~iii ! was not modi-
fied. This is the outcome of the independent diffusion of t
components outside the reaction zone in the reversible
gime also.

~c! The analytical expressions describing the reaction
namic outside the reaction zone are the same in both
irreversible and reversible regimes. This is a result of co
dinating the solutions considered in~a! and ~b!.

Consequently, the asymptotic expressions for the com
nent profiles outside the reaction zone, the global rate of
reaction, and the front reaction coordinate are the same in
irreversible and reversible regimes.

We have shown above that, whent→` andg→0 simul-
taneously, the descriptions of the reaction-diffusion syst
outside the reaction zone coincide in the two regimes: in
irreversible regimegt!1 @under the assumptions~i!–~iv!#
and in the reversible regimegt@1 @under the assumption
~i-m!, ~ii-m!, ~iii !, and ~iv-m!#. Two major properties are
used in the analysis of both regimes.~a! The first is the
applicability of the quasistatic approximation. On this ba
the linear dependence onx of the expressionsDArA
1DCrC and DBrB1DCrC was derived.~b! The second is
the monotonic decrease of the reaction zone width with
spect to the diffusion length. Consequently, in the reg
where the quasistatic approximation can be used, indep
dent diffusion of the components also occurs. Both requ
ments ~a! and ~b! are fulfilled when the ratiotF /tJ
;w2(t)/Dt→0 ast→` andg→0. This is the case when
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FIG. 2. Reaction characteristics:~a! the global rate ofC production,Rr global
; ~b! the coordinate of the reaction zone center,xf ; ~c! the

width of the reaction zone,w; ~d! the local rate ofC production,Rr local
at x5xf , all as functions of the time step numbern. Rr global

andRr local

are in units oft21. xf andw are measured by the number of space stepsj. Three values ofg were used, namely,g51023, 1024, and 0~in
units of t21).
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general monotonic dependence of the reaction zone wid
assumed:w(t,g);ta for gt!1, w(t,g);gbt1/2 for gt@1,
and these limiting dependencies are monotonically linked
gt;1. The numerical simulation presented in Refs.@22,29#
and the calculation described below support the validity o
monotonic dependence ofw on time in the regiongt;1.
Thus, from the dependence ofw5w(t,g) it follows that the
formulas describing the behavior of the system outside
reaction front apply to arbitrary values ofgt. In other words,
the macroscopic properties of the reaction-diffusion sys
do not change with time through the crossover from the
reversible to the reversible regime. The above descrip
linking the two domains ofgt!1 andgt@1 may be formu-
lated by remodifying the assumptions~ii-m! and ~iv-m! as
follows. In assumption ~ii-mm! the dependencew(t)
;t1/2gb is replaced byw(t,g), where w(t,g) is a time-
dependent monotonic function having the properties
scribed above. In assumption~iv-mm! the quasistatic equa
tions of the reversible reaction~24! are replaced by the
quasistatic equations obtained by equating to zero the
side of Eqs.~11!. These quasistatic equations control t
crossover near the reaction zone.

Assumptions~i-m!, ~ii-mm!, ~iii !, and ~iv-mm! for t→`
andg→0 are applied to arbitrary values ofgt and determine
the properties of the crossover from the irreversiblegt!1 to
the reversiblegt@1 regime. This means that the compone
profiles outside the reaction zone, the global rate of the
is
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action, and the front reaction coordinate motion are u
changed at all times during the crossover.

It should be emphasized that, as in Ref.@11#, our assump-
tions do not restrict the form ofR, and therefore our result
are true for all cases when the indicated assumptions
valid. In particular, they are true for the case ofd<dc , when
the mean-field expression forR is not valid.

III. MEAN-FIELD APPROXIMATION: THE CASE OF A
THIN REACTION ZONE

Consider Eqs.~11! with the mean-field expressionR
5krArB , wherek is the direct reaction constant, as the sim
plest case of a system to which the above theoretical
proach may be applied. To test the assumptions and the p
erties of the crossover from the irreversible to the revers
regime, the equations were solved numerically by an ex
enumeration method@9,10,29,31,32#, which is essentially
equivalent to discretization of Eqs.~11! in both time and
space. A one-dimensional discrete lattice is considered. F
the diffusion step is calculated and only then is the react
taken into account. The equations describing the reac
step were obtained on the basis of Eqs.~11! without the
diffusion terms. The local reaction rate is calculated
Rr local

( j )[Rr( j ), where j is a discrete spatial point. As in

Ref. @9#, the time stept equals 1, whereasrA , rB , andrC
are the dimensionless probabilities of locatingA, B, andC,



lu
-

e

lcu

t

th
y

y

s

re

, t
p

id
io
-
no

e
i-

e
o

se

ll
e

ss

4940 PRE 61MISHA SINDER AND JOSHUA PELLEG
respectively, at a discrete point. This means that the va
of Rr , k, andg are in units oft21 and they are nondimen
sional. The constantsk50.1 andg51023, 1024, and 0 were
used. The global rate ofC production was calculated as th
sum over all discrete spatial points,

Rr global
5(

j
Rr~ j !. ~25!

Figures 2 and 3 show the results of the numerical ca
lation for a05b051.0 andDB50.25DA50.5DC . In particu-
lar, the dependencies of the local and global rates ofC pro-
duction, the coordinate of the reaction zone center, and
width of the reaction zone on the number of time stepsn are
shown in Fig. 2. In Figs. 2~a! and 2~b! no changes through
the crossover of the global rate and in the coordinate of
reaction zone center may be seen. By contrast, similarl
Refs.@22,29#, the crossover of the local rate ofC production
and the width of the reaction zone are accompanied b
change in the exponents, from;n22/3 to ;n21 and from
;n11/6 to ;n11/2, respectively, as seen in Figs. 2~c! and
2~d!. Note that the functionw5w(n) grows monotonically
as assumed in~ii-mm!, i.e., one of the important assumption
is true in the case of the mean-field approximation.

The concentration profiles of the components for th
times 0.1g21, 10g21, andg21 (g51024) are shown in Fig.
3. The chosen values represent the irreversible regime
reversible regime, and the crossover between them, res
tively. In accordance with expressions~9!, ~10!, ~14!, and
~15!, the concentration profiles coincide in the region outs
the reaction zone when expressed in terms of the diffus
like coordinatex/At; j /An. In the reaction zone, in accor
dance with our theoretical predictions, the profiles do
coincide.

Knowing the concrete form ofR5krArB , the expres-
sions forrA , rB , rC , andRr inside the reaction zone in th
reversible regimegt@1 for g→0 have been computed d
rectly from Eqs.~24! and are given below:

rA5~gCDB /kDADC!1/2f 0~x/w0!, ~26!

rB5~gCDA /kDBDC!1/2f 0~2x/w0!, ~27!

rC5krArB /g5C/DC , ~28!

Rr5~kDC /gCDADB!1/2~J22J1!2f 1~x/w0!. ~29!

Here

w05AgCDADB /kDC/~J22J1!,

w15AgCDADB /kDC/~2J1!,

f 0~y![0.5~Ay2142y!,

and

f 1~y![2/~y214!3/2.

These expressions show that for the concentrationsA, B,
and C and for Rr , neither the scaling exponents nor th
scaling functions depend on the diffusion constants and
es
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the initial reactant concentrations. This is similar to the ca
of the irreversible regime@Eqs.~1!–~3!#.

In Fig. 4, the simulation data forRr(x,t) are compared
with expression~29!. The data fit the curve obtained from
Eq. ~29! reasonably well.

IV. MEAN-FIELD APPROXIMATION: THE CASE OF A
WIDE REACTION ZONE

In Secs. II and III the reaction-diffusion system with sma
g values was discussed@22,29#. For this case, the complet

FIG. 3. The simulated concentration profiles of~a! A, ~b! B, and
~c! C for three times 1021g21, g21, and 10g21 ~in units of the
discrete time stept! expressed in the diffusionlike dimensionle
coordinatej /An (k50.1, g51024). Here,rA , rB , andrC are the
dimensionless probabilities of locatingA, B, andC, respectively, at
a discrete point.
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dynamics of the reversible reaction-diffusion systemA
1B↔C, with initially separated reactantsA andB, may be
described as a crossover through three regimes, namely
short-time regime, the long-time irreversible regime, and
long-time reversible regime. At short timest!tc;k21 the
initially separated reactantsA and B start to mix@6,9#. The
reaction is not influenced by theA andB profiles and occurs
in a region of widthw which is approximately equal to th
diffusion length ;ADAt,ADBt. For intermediate timet
;tc , the direct reactionA1B→C becomes more dominan
and for timest@tc , long-time asymptotic behavior appea
@6,8,12,21#. This state, describing the long-time irreversib
regime, is characterized by a relatively small reaction zo
width w!ADAt,ADBt. At time t;t r5g21 the backward re-
action sets in, and for timest@t r the system converts to th
long-time reversible regime@22#. In Table I the quantities
characterizing these regimes in the reaction-diffusion sys
are summarized. The data relating to timesgt!1 were taken
from Ref. @8#, taking into account that for these time
Rr(x,t)'R(x,t).

The classification in Table I is valid only iftc!t r
5g21, i.e., for small valuesg. If g is not sufficiently small
and tc;t r the irreversible regime has not enough time
appear; therefore for long timest@tc ,t r , the system trans
forms to the reversible regime directly, bypassing the ir
versible regime. In this case the quasiequilibrium express
krA(x,t)rB(x,t)5grC(x,t) is valid and the system may b
described by Eqs.~22! also. Thus, the reversible regime wi
large reaction widthw;ADAt,ADBt is described by Eqs
~22!.

FIG. 4. Simulated profile ofRr local
(x,t) at time 1021 (k50.1,

g51024) fitted by f 1(y)[2/@(x/w0)214#3/2. f 1(y) is proportional
to the asymptotic expression~29!. Here j is a discrete space ste
number.Rr local

(x,t) is in units oft21.
the
e

e

m

-
n

Taking into account the diffusionlike character of Eq
~22! in the mean-field approximation and the initial cond
tions of Eq.~12!, the asymptotic solution of these equatio
may be presented in the formrA5rA(x/At), rB

5rB(x/At), andrC5rC(x/At) @29#. From these forms the
universal properties of the reversible regime equationsw
;t1/2, Rr local

;t21, Rr global
;t21/2, andxf;t1/2, immediately

follow. This is true for the wide reaction zone case als
These scale dependencies are important indications th
reaction-diffusion system occurs in the reversible regim
which may be used for the analysis of experimental data

Equations~22! have a simple analytical solution for equ
diffusion constantsDA5DB5DC5D and arbitrary values of
the initial concentrations and reaction constantsk and g
@29,30#:

rA1rC50.5a0@12erf~x/2ADt !#,

rB1rC50.5b0@11erf~x/2ADt !#, ~30!

krArB5grC .

In Fig. 5 the change ofRr with varying g from the thin
reaction zone state to the wide reaction zone state is il
trated on the basis of Eqs.~30! and ~23!.

Our approach, by which the reversible reaction regi
A1B↔C was considered, may be applied in an analogo
manner to other reactions such asmA1nB↔C or mA

FIG. 5. The local rate ofC productionRr(x,t) ~in units ofka0
2)

as a function of the nondimensional diffusionlike coordina
x/2ADt for values ofg5100– 1024 @computed from Eqs.~23! and
~30! with valuesk50.1, a051.0, andb050.25#. Hereg is in units
of ka0 .
TABLE I. The reaction front properties of the crossover in the initially separated reversibleA1B↔C
reaction-diffusion system.

Quantity Notation

Short-time
regime

t!tc;k21

Long-time
irreversible regime

gt!1

Long-time
reversible regime

gt@1

Global rate Rr global
(t) t1/2 t21/2 t21/2

Center of front xf(t) nonuniversal t1/2 t1/2

Width of front w(t) t1/2 t1/6 t1/2

Local rate atxf Rr local
(xf ,t) constant t22/3 t21
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1nB↔pC1qD and can be generalized to an arbitrary nu
ber of such components and reversible reactions@33#. Taking
into account that the macroscopic characteristics of
reaction-diffusion system in the irreversible regime coinc
with those of the reversible regime, the equations of the
versible regime and their solutions~in the thin reaction zone
limit ! can conveniently be used for analysis of the irreve
ible regime dynamics.

V. SUMMARY

The diffusion-reaction systemA1B↔C with initially
separated reactants was investigated for arbitrary non
values of the diffusion constantsDA , DB , and DC of the
componentsA, B, andC and the initial concentrationsa0 and
b0 of A andB, respectively. The results of the investigatio
are the following.

~1! It was found that forg→0, t→`, and arbitrary values
of gt the concentration profile ofC outside the reaction zon
for nonzero values ofDC may be described by the analytic
expressions~14! and ~15!.

~2! It was found that forg→0, t→`, the reversible re-
gime gt@1 is characterized by the same macroscopic pr
erties as the irreversible regimegt!1. Moreover, the ana
lytical expressions for the concentration profiles outside
reaction zone, the global rate ofC production, and the law o
motion of the reaction zone center coincide with those in
irreversible regime. All these are true if some of the natu
assumptions are valid. The important assumptions are~a! the
dependence of the reaction zone width on timet and constant
s

-

e
e
-

-

ro

-

e

e
l

g, w;Atgb, ~b! the use of the refined expressionRr[R
2grC for calculation of the reaction rate, and~c! the quasi-
static equations~24!, which take into account the local equ
librium relationR5grC .

~3! In the framework of the generalized assumption
which can be tested experimentally or by computation, it w
found that the macroscopic properties of the reaction fr
for g→0, t→` are conserved not only in the limiting re
gimes gt!1 and gt@1, but also at all times through th
crossover from the irreversible regime to the reversible
gime. In other words, the same analytical expressions ca
used for arbitrary values ofgt. The first important conjecture
here relates to the type of the dependencew5w(t,g). Two
regions of the functionw(t,g) are linked monotonically at
gt;1: w;ta at times gt!1 and w;Atgb at times gt
@1. The second important result is the use of the quasis
equations for describing the reaction-diffusion system ins
the reaction zone.

~4! Numerical computation of the mean-field equatio
confirms the assumed dependence ofw5w(t,g) and the
properties of the crossover from the irreversible to the
versible regime.

~5! It is shown that within the framework of the mean
field equations for sufficiently large values ofg, the irrevers-
ible regime is not achieved, and the reaction-diffusion s
tem has a crossover from the short-time regimet!tc;k21

directly to the long-time reversible regimet@g21 with a
wide reaction zone. The general properties of the revers
regime, such asRr(xf ,t);t21, Rr(t);t21/2, xf;t1/2, and
w;t1/2, are maintained also.
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