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Crossover from nonclassical to classical chemical kinetics in an initially separated+B«C
reaction-diffusion system with arbitrary diffusion constants
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The asymptotic long-time properties of the reaction front formed in a reversible reaction-diffusion process
A+B«<~C with initially separated reactants are investigated. The case of arbitrary nonzero values of the
diffusion constant® ,,Dg,D¢ of the component#,B,Cand the initial concentratiors, andb, of A andB
is considered. The system is studied in the limitge$ 0, whereg is the backward reaction rate constant. In
accordance with previous work, the dynamics of the reaction front is described as a crossover between the
“irreversible” regime at times<g~! and the “reversible” regime at timets>g~ 2. It is shown that through
this crossover the macroscopic properties of the reaction front, such as the global @eazfuction, the
motion of the reaction zone center, and the concentration profiles of the components outside the reaction front,
are unchanged. The concentration profiles of the components inside the reaction zone are described by quasi-
static equations. The results of the theoretical consideration are confirmed by computing the mean-field kinetics
equations.

PACS numbes): 82.20.Wt, 82.20.Mj, 05.46:a

. INTRODUCTION whereS,, Sg, andSg are some scaling functions;ct2 is
the point where the reaction raR has a maximum value,
The reaction front formed in amA+B—C reaction- W(t)ct*<t"?is the width of the reaction zoney, , 7g, and
diffusion system with initially separated reactants is of great7r are some parameters independentxoénd t, and the
interest since it represents a pattern for a wide class of pr&xponentsa, ya, ys, and yg are some positive constants.
cesses in physics, chemistry, and biolddy-3. The possi- The values ofa=3, ya=7yg=3, yr=3 Were obtained in
bility of testing the theoretical predictions by experimentalthe mean-field approximation for the nonzero diffusion con-
studies in this system is also important. Since the article oftantsD andDg. The values ofy, ya, g, andyg and the
G4fi and Rz [4] much work has been devoted to studying form of Sa, Sg, andSg do not depend o , andDg and
this problem by different approachgs—28. The main in- the initial concentration®, and b, if the values of these
terest in these studies was concentrated on the spatiotemp?)a—lra'”nﬁterS are nonzefé,26,27,14,11 L
ral behavior of the reactan#s and B and on the production surlr?e(tj '?hzg[ufisrlS'stt?#gi}:;}[/lyﬁgﬁgmt(ilngdt:%g'fr?;,ntltrézcﬁ; is
rate of C. C is usually assumed to be motionless. The tra- . T :
ditional approach is toyconsider a system of partial differen described by two characteristic time scales. One time scale,

tial equations for the mean local concentratipngx,t) and 73[d(InJ)/df]"ect, determines the rate of change in the dif-

: i : X fusive currentl=J,=Jg of the reactanté andB arriving at
pe(x,t), which contain the macroscopic reaction ref,t) the reaction zone. The second time scalesw?/D =t is
[4]. Some techniques have been developed to study thesge equilibration time of the reaction front. Far<3,
equations, for the cases of space dimensiord.=2, when ./, .0 ast—, i.e., the reaction in the reaction zone
the mean-field expressidR=papg is valid, and ford<dc,  quickly converges to the currents of the reactant® Afand
when the explicit form ofR is unknown[23,16,25-2].  p_ are nonzero, the asymptotic forms pf and pg inside
These techniques consider the asymptotic long-time limit othe reaction zone are described by simple quasistatic equa-
the reaction-diffusion system and include renormalizationtions. The characteristic feature of the quasistatic equations
group analysi$26—-28, the scaling ansat#,24], the quasi- is that they include time only as a parameter, through the
stationary approximationl3,23, and the approach devel- time-dependent boundary currentg=Jg=J. The depen-
oped by Kozd11]. dence ofJ ont, Da, Dg, @y, andby may be determined

According to the scaling ansaf4], the long-time behav- analytically[11].

ior of the reaction-diffusion system inside the reaction zone Recently, Koza applied the quasistationary approximation

may be represented in the form to the investigation of the asymptotic properties of the sys-
tem outside the reaction zorj@1]. Without knowing the
B X—X(t) concrete form ofR, in the framework of a few physically

PA(X,t) = 7at yASA(W>’ (1 based assumptions, controlled by simulation or experimen-

tally, many interesting quantities were determined exactly as
a function of the external parametdds , Dg, a5, andby.

pa(x,t)= nBt‘VBSE,(l;(t)), 2) In particular, the existe_nce of long-time limits xf(t), J(t),
w(t) and R(t) was shown, i.e., as—, X;(t)/\t—Cs, J(t)\t
—C;, and R(t)\/f—>CJ. Here R(t) is the global reaction
oty X—x¢() rate ofC production. The valu€; can be computed from the
R=ngt” "RSg , (€©)) :
w(t) equations
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—Cx VDA Cs
() = () , 4
2yDx/ boyDg |2\Dg @
d(x)=[1—erf(x) Jexp(x?), (5)

where erfQ)=27Y2[} exp(— 77)d7 is the error function.
C; can be calculated from the expressions

Ca=ag/[erf(Ci/2\Dp)+1], (6)

Cg=—bg/[erf(C/2\Dg)—1], 7)
Cy=Ca\Da/mexp —C2/4D )

=Cg\Dg/mexp — C?/4Dg). )

The constant€C, and Cg control the form ofp, and pg
outside the reaction zone. FREX;—Ww,

pA(X,t):aO_CA[erf(X/\4DAt)+1], (9)

fect the scaling exponents. On the other hand, it is not clear
whether under more general conditions the macroscopic
properties of the crossover remain unaltered.

The objective of this work is to study far—< andg
—0 the crossover from the irreversiblgt<1) to the re-
versible @t>1) regime with arbitrary nonzero diffusion
constants and with arbitrary initial reactant concentrations.
The analysis will be performed in the framework of Koza’'s
approach[11], extended to the case of the reversil#le
+ B« C reaction. It will be supplemented by numerical and
analytical computations of the equations in the mean-field
approximation.

The paper is organized as follows. In the next section the
analysis of the limiting cases of the irreversible and revers-
ible regimes and the crossover from one to the other is pre-
sented. The behavior of the system in the case of a thin
reaction zone is studied numerically and analytically on the
basis of the mean-field kinetic equations in Sec. lll. Section
IV is devoted to the reversible regime when the reaction
occurs in a wide region. Section V summarizes the results of

our work.
and forx>x;+w,

II. IRREVERSIBLE AND REVERSIBLE REGIMES

pe(X,t)=bo+ Cglerf(x/4Dgt) —1]. (10 AND THE CROSSOVER BETWEEN THEM
A major part of the workg§4-6,8—21,23—2Bwas con- The reversible reaction-diffusion systefnt+ B« C is de-

cerned with the irreversible reactioh+B—C, but com-  scribed by the following equatiori22]:
monly the chemical reactions are reversible at sufficiently

large time. In Refg.22,29 the case of the reversible reaction Ipa Ipa

A+ B« C with initially separated reactants was studied for St Pagez Rtdpc,

long timest—o and for small values of, whereg is the

backward reaction rate constant. It was established that the dpg #pg

dynamics of the front can be described in terms of a cross- St~ Pe 2z ~Rtdpc, (13)

over between the “irreversible” regime at timgg<<1 and

the “reversible” regime at timegt>1 [22]. In the “irre- dpe Ppe

versible” regime, the front dynamics coincides with those 7=DCW+R_9PC'
predicted by GHi and Raz[4]. In the “reversible” regime,

a local equilibrium at the reaction front exists, and only theyiiny the initial state given by

diffusion process governs the dynamics. It was established

that the concentration8, B, and C near the reaction zone pa(x,t=0)=agH(—x); pg(X,t=0)=boH(+X);

may be described in the form of Eq4)—(3) with the expo-

nentsya, vg, Yc, andyg equal to zero, whereas the reac- pc(x,t=0)=0, (12)
tion front width w given by w~1t? is independent of the

space dimensiof22]. wherepa, pg, pc, Da, Dg, andD¢ are the local concen-

In Ref. [29] the refined rate ofC productionR,(x,t), trations and diffusion constants &f B, andC, respectively.
including forward and backward reactions, was studied on For times ofgt<1, we havegpc<dpc/dt and therefore
the basis of the mean-field equations for molfilelt was  the backward reaction term in Eqell) may be neglected
shown that the reversible regimgté1) is characterized by [22], resulting in
scaling of the local rate of production aﬂ?,local~t‘1 and

by scaling of the global rate o€ production aSRrglobaI

~t~12 Furthermore, a surprising property was observed in
the crossover from the “irreversible” to the “reversible” 5
regime, namely, that the macroscopic properties of the %:D J pB_R (13)
reaction-diffusion process, such as the time dependence of ot Boxz

the global rate ofC production and the distributions of the

components, are unchanged outside the reaction front. In dpc #pc

Ref.[29] only the specific case of equal diffusion constants ot DCWJFR'

of A, B, andC and equal initial concentrations of the reac-

tants was considered. It was assumed, similarly to the irre- Let us begin with the behavior of the reaction-diffusion
versible reaction casgl], that the equality of the diffusion system(12) and(13) at asymptotically long times df— oo,
constants and the initial reactant concentrations does not afellowing Koza's approach with our modification, which

o _p Tpa
ot A ox?

-R,
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takes into account the nonzero diffusion constan€oOur 3, (t), J,(t), and ¥ (t) are some time functions, which are
modification does not change the basic line of Koza’'s conrelated to the functions from the boundary conditi¢h®) by
sideration[11]. We shall discuss only some key points, J,(t)=Jg(t)=J(t)=J,(t) = J1(t), Jc;=J5(t), and Jc,=
which are essential for further use. —J,(t). On the other hand, assumpticiii) determines ex-
The long-time limit properties of the reaction-diffusion pressiong9) and(14) for p, andpc in regionx<x;—w. By
system will be deduced in the light of a few physical as-coordinating expressior(8) and(14) with Eqs.(17) and(18)
sumptions, which were comprehensively discussed and verignd applying the same analysis fes and pc in the region
fied by Koza[11]. x>x;+w, Egs. (4)—(10), (19), and (20) are obtained for
(i) R, the production rate df, attains its maximal value at computation of the constan®;, C;, Cj;, Cjs, Ca, Cg,
point x;(t). There is a pointx, where Dapa(Xg,t) Cc1, andCey:
=Dgpg(Xg,t). At asymptotically long timeg—oo, x;(t)

(i) The reaction occurs mainly in a regiofx— x| Cc1=Cy\m/4D P f ,
~w(t)~t*, where 0<a<3%. Outside this region, at<x 2D
—wW, we havepp,pc>pg, and atx>X;+Wpg,pc>pa IS
obtained. —C
(iii ) The dynamics ofp, andpc in the regionx<x;—w Cco=C,\7@/4D P : (19
may be described by Eq) and(14): 2\/D_C
pC(X,t)2001[erf(X/ \/4Dct)+ 1], (14) Cf
CJl:_O.K:J 1+erf y
whereC, andC.; are constants. For>x;+w the dynam- 2\/D_C
ics of pg andpc may be described by Eq6l0) and (15):
C
pc(x,t)=—Ccylerf(x/4Dct) — 1], (15) C2=0.5C; 1—erf( : H (20)
2Dc

whereCg andC, are constants. )

(iv) The quasistatic approximatiofi.e., when the left Ct. Cs, Cy1, andC,; are constants that determine the long-
sides of Eqgs.(13) are neglecteflis true in the region time behavior of the reaction front coordinate and the
— (D) Y2<x<(Dgt)¥2 These quasistatic equations arecurrents to the reaction front of the componerit)

supplemented by the following boundary conditions: =J5(t) = J41(t), Ja(t), and J,(t) by the following expres-
sions:  limxg(t)/\t—C¢, lImJI(t)Vt—Cy, limJI (1)t
Dadpaldx——Ja(t), pg—0, Dcdpc/dx—Jci(t), —Cj;, and limJ,(t)yt—Cj,. The constantsC,, Cg,

Cc1, andCg, are related to the form of the concentration
' profiles outside the reaction zone. The functibrirom Egs.
(17) and (18) does not depend on the time and is given by

X— —®

pa—0, Dgdpg/dx—Jg(t), Dcdpc/dx— —Jca(t),

X— + 0, (16) ¥=DcCc;

f( S )y
er
2D¢

+1

whereJa(t), Jg(t), Jci(t), andJq,(t) are some functions

describing the currents of the componeAtsB, and C, re- o

spectively, toward the reaction zone. —erf( 2D¢
With these assumptions the solution of Etf3) is reduced c

to solutions of more simple solvable equations. The regions o, anaiysis is extended as compared to the work of Koza
in which these simple solutions are valid overlap and thi 11] by taking into account the diffusion of the produ@t
enables them to merge into a complete solution. In particulalg tside the reaction zon€ diffuses independently of the

from assumption(ii) it follows that the reaction proceeds o ctantsn andB, and therefore th€ profiles can be calcu-
only inside a thin zone, while outside this zone independenfated on the basis of the diffusion equatiofpe/at

diffusion of the components occurs. Therefore, the concen- #pelax?. The form of theC profile outside the reac-
tration profiles outside the reaction zone may be calculategonCzongiS sHown in Fig. 1. It describes the exit®from

b..Y standard diffusion equations as presented in ass_umptio[ﬂe moving reaction zone. The break in @@rofile near the
.('”)' Note that _thes_e forms ensure that th? concentration IImr'eaction front is related to the production @fin this zone.
its for x— = implied by the initial conditiong16) are ful- For times ofgts>1 andt— o the system reaches a state of

filled. For examplg, '"TPCZO if X 00, . . local equilibrium, R(x,t)=gpc(X,t), and Egs.(11) trans-
From the quasistatic equations linear expressionsdan ¢ . 1o reversible regime equatiofi29,3q given as

be obtained in the region (D at) Y?<x<(Dgt)¥? according ’

to assumptionsi) and (iv) as given by

= Dccc2 . (21)

0:_R+ng!

DapatDepe~Jdi(t)[X—Xo(t) ]+ W (1), (17 5 5 (22)
In dpc_p Poa ) Fre

Dgpg+ Depe~Jda(t)[X—Xo(t)]+P(t). (18 ot at A ox Cox?



4938

pc(x,t)

X, X

FIG. 1. The form of theC profile calculated on the basis of Egs.

(14), (15), and(19) given in arbitrary units op andx. The dashed
line marks the region near the reaction frent; , where the above
equations cannot be applied.

dps  dpc 9°pg Ipc
—2+—S=Dg—7n +De—7.
at ot B ox? € x>
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a more general form, i.ew~t?g#, wherep is some posi-
tive constant. This relatiortas in the irreversible regime
justifies the simplified quasistatic equations in the region
—(Dgt)Y2<x<(DAt)Y? where the local equilibrium rela-
tion R=gpc is used. The equations are

0=—-R+gpc,

Ppc

Fpa
OZDA +DC_5X2 ’

ra 24

I°pg 7pc
= _+ —_—
0=Dg— 7z +Dc2

Let us replace assumptiorts, (ii), and (iv) of the irre-
versible case by the modified assumptidinsn), (ii-m), and
(iv-m) given below for the reversible case: in assumption
(i-m) the rate ofC production,R, is changed to the refined
rate of C production,R,; in assumption(ii-m) the depen-
dencew~t® is replaced byw(t)~t*’g#, whereg is a posi-
tive constant; in assumptiafiv-m) the quasistatic equations
of the irreversible reaction are replaced by the quasistatic

Equations(22) describe the correlated diffusion of the com- equations of the reversible reacti¢d4). On the basis of
ponents in the “reversible” regime, but they are not equiva-these assumptions the analysis performed for the irreversible

lent. Whereas the first equatid®(x,t) =gpc(x,t) is valid

regime @t<<1l) can be repeated without variations for the

only asymptotically fot— o, the second and the third equa- yeyersible regimedt>1), provided the limitg— 0 is added
tions are precise. These two equations can be obtained frofg the limitt—. This is based on the analogy between the
Eq. (11) by adding the first and second equations to the thirdy,, regimes. Thus we can make the following statements.

one, respectively.

Calculation of the refined rate o production,R,=R
—gpc, cannot be performed directly from Eq22). It can
be calculated by substituting the solution of E¢&2) into
any of the original equationd 1) [29] resulting in

I°pa Ipa
Re=Pa ™ Tt
pg  Ips
Ri=De 2~ (23
#pc  dpc
R=D + =2,
TG T gt

(@ The linear dependence ax of Dapp+Dcpc and
Dgpg+Dcpc is a consequence of the modified quasistatic
equations(24). This dependence is the same as in the irre-
versible regimdsee Eqs(17) and(18)].

(b) Outside the reaction zone the concentration profiles
have the same form because assumptibhwas not modi-
fied. This is the outcome of the independent diffusion of the
components outside the reaction zone in the reversible re-
gime also.

(c) The analytical expressions describing the reaction dy-
namic outside the reaction zone are the same in both the
irreversible and reversible regimes. This is a result of coor-
dinating the solutions considered (@ and (b).

Consequently, the asymptotic expressions for the compo-
nent profiles outside the reaction zone, the global rate of the

This substitution is equivalent to the second step of the perreaction, and the front reaction coordinate are the same in the

turbation theory on a large time scd9].

Consider the behavior of the reaction syst&mB+« C in
the reversible regime assuming tlgat>0 [30]. In this case
the dynamic equilibrium of the reactioh+ B+« C sharply
shifts to the right, namely, the direct reactidn-B—C is
preferential to the backward reactidn- B« C, and in most
points along thex axis only componenté andC or B andC
exist, i.e.,pa,pcS>pp Of pg,pc=pa- There exists a thin
zone wherep,=pg and the production o€ is concentrated

irreversible and reversible regimes.

We have shown above that, wher-cc andg—0 simul-
taneously, the descriptions of the reaction-diffusion system
outside the reaction zone coincide in the two regimes: in the
irreversible regimegt<1 [under the assumption@)—(iv)]
and in the reversible regimgt>1 [under the assumptions
(i-m), (ii-m), (iii), and (iv-m)]. Two major properties are
used in the analysis of both regimg®) The first is the
applicability of the quasistatic approximation. On this basis

only in this place, while in other regions independent diffu-the linear dependence or of the expressionsDapa
sion of the components occurs. The reaction zone wigth +Dcpc and Dgpg+Dcpc Was derived(b) The second is

evaluated on the basis of Eq22) in the mean-field approxi-
mation [29,30], has a scalingv~ /gt if g—0. As in the

the monotonic decrease of the reaction zone width with re-
spect to the diffusion length. Consequently, in the region

irreversible regime, the relation between the characteristisvhere the quasistatic approximation can be used, indepen-
times 7; and 7= can be written in the reversible regime as dent diffusion of the components also occurs. Both require-

Te~W2/D~tg<7y~[d(InJ)/dt] *~t. The relation ¢/,
—0 if g—0 is also valid when the dependencenobn g has

ments (@) and (b) are fulfiled when the ratiorg/7;
~w?(t)/Dt—0 ast—» andg—0. This is the case when a
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FIG. 2. Reaction characteristic&) the global rate ofC production,R,global; (b) the coordinate of the reaction zone center, (c) the
width of the reaction zoney; (d) the local rate ofC production,Rrlocal atx=X;, all as functions of the time step humberR, bl and R

are in units ofr~ . x; andw are measured by the number of space siefpbree values ofj were used, namelg=10"3, 10”4, and 0(in
units of 771).

general monotonic dependence of the reaction zone width iaction, and the front reaction coordinate motion are un-
assumedw(t,g)~t® for gt<1, w(t,g)~g?t? for gt>1, changed at all times during the crossover.
and these limiting dependencies are monotonically linked for It should be emphasized that, as in Héfl], our assump-
gt~1. The numerical simulation presented in Ré2,29  tions do not restrict the form dR, and therefore our results
and the calculation described below support the validity of aare true for all cases when the indicated assumptions are
monotonic dependence of on time in the regiongt~1.  valid. In particular, they are true for the casedsfd., when
Thus, from the dependence wi=w(t,g) it follows that the the mean-field expression f& is not valid.
formulas describing the behavior of the system outside the
reaction front apply to arbitrary values gf. In other words, Il. MEAN-FIELD APPROXIMATION: THE CASE OF A
the macroscopic properties of the reaction-diffusion system THIN REACTION ZONE
do not change with time through the crossover from the ir-
reversible to the reversible regime. The above description Consider Egs.(11) with the mean-field expressioR
linking the two domains ofjit<1 andgt>1 may be formu- = kpapg, Wherek is the direct reaction constant, as the sim-
lated by remodifying the assumptioti-m) and (iv-m) as plest case of a sys_tem to which the aboye theoretical ap-
follows. In assumption (i-mm) the dependencew(t)  Proach may be applied. To test the assumptions and the prop-
~tY298 is replaced byw(t,g), wherew(t,g) is a time-  erties of the crossover from the |rreverS|bI¢ to the reversible
dependent monotonic function having the properties def€gime, the equations were solved numerically by an exact
scribed above. In assumptidiv-mm) the quasistatic equa- €numeration method9,10,29,31,3% which is essentially
tions of the reversible reactiof24) are replaced by the equivalent to discretization of Eq¢ll) in both time and
quasistatic equations obtained by equating to zero the lefiPace. A_one—d|mgn3|onal discrete lattice is can|dered. F_|rst
side of Egs.(11). These quasistatic equations control thethe diffusion step is calculated and only then is the reaction
crossover near the reaction zone. taken into account. The equations describing the reaction
Assumptions(i-m), (i-mm), (i), and (iv-mm) for t—co sFep were obtained on the basis_, of Eqsl)_ without the
andg—0 are applied to arbitrary values gf and determine dlffuspn terms. The ngal reaction rate is ca!culated. as
the properties of the crossover from the irreversipeel to ~ Rr(1)=R:(j), wherej is a discrete spatial point. As in
the reversiblegt>1 regime. This means that the componentRef. [9], the time stepr equals 1, whereas,, pg, andpc
profiles outside the reaction zone, the global rate of the reare the dimensionless probabilities of locatitgB, andC,
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respectively, at a discrete point. This means that the values
of R,, k, andg are in units ofr~* and they are nondimen-
sional. The constants=0.1 andg=10"3, 10 4, and 0 were
used. The global rate d& production was calculated as the
sum over all discrete spatial points,

Rrg,oba,=; R(j). (25)

Figures 2 and 3 show the results of the numerical calcu-
lation forag=by=1.0 andDg=0.28D ,=0.5D . In particu-
lar, the dependencies of the local and global rate€ pfo-
duction, the coordinate of the reaction zone center, and the
width of the reaction zone on the number of time stepse
shown in Fig. 2. In Figs. @) and Zb) no changes through
the crossover of the global rate and in the coordinate of the
reaction zone center may be seen. By contrast, similarly to
Refs.[22,29, the crossover of the local rate Gfproduction
and the width of the reaction zone are accompanied by a
change in the exponents, fromn=?2to ~n~! and from
~n*¥ to ~n*12 respectively, as seen in Figs(cR and
2(d). Note that the functioov=w(n) grows monotonically
as assumed ifii-mm), i.e., one of the important assumptions
is true in the case of the mean-field approximation.

The concentration profiles of the components for three
times 0.5 %, 10y~ %, andg ™! (g=10"*) are shown in Fig.
3. The chosen values represent the irreversible regime, the
reversible regime, and the crossover between them, respec-
tively. In accordance with expression8), (10), (14), and
(15), the concentration profiles coincide in the region outside
the reaction zone when expressed in terms of the diffusion-
like coordinatex/\t~j/+/n. In the reaction zone, in accor-
dance with our theoretical predictions, the profiles do not
coincide.

Knowing the concrete form oR=Kkp,pg, the expres-

sions forpa, pg, pc, andR, inside the reaction zone in the
reversible regimegt>1 for g—0 have been computed di-
rectly from Eqs.(24) and are given below:
pa=(gV¥Dg/kDaD ) o(x/Wo), (26)
pe=(g¥DA/kDgDc)fo( —x/Wp), (27
pc=kpaps/g="¥/Dc, (28)
Ry=(kDc/gWDaDg) YA J,—J1)%F1(XIwg). (29

Here

Wo= Vg\PDADB/kDC/(JZ_‘]l)!

palj,n)

pe(j,n)

pcli.n)
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1-t=10"¢g"
2-t=10°g"
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FIG. 3. The simulated concentration profiles(af A, (b) B, and
(c) C for three times 10'g™%, g~%, and 1@~ (in units of the

discrete time step) expressed in the diffusionlike dimensionless
coordinatej/yn (k=0.1,g=10"%). Here,p,, pg, andpc are the
dimensionless probabilities of locatig B, andC, respectively, at

a discrete point.

W]_: \/g’\PDADB/chl(_Jl),

the initial reactant concentrations. This is similar to the case

foy)=0.5\y?+4-y),

and

of the irreversible regimgEgs. (1)—(3)].

In Fig. 4, the simulation data foR,(x,t) are compared

with expression(29). The data fit the curve obtained from

Eq. (29) reasonably well.

fa(y)=2/(y?*+4)%2

These expressions show that for the concentratigng,
and C and for R,, neither the scaling exponents nor the

IV. MEAN-FIELD APPROXIMATION: THE CASE OF A

WIDE REACTION ZONE

In Secs. Il and Il the reaction-diffusion system with small
scaling functions depend on the diffusion constants and og values was discussg@2,29. For this case, the complete
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0.00003 10T
—a— simulated values
0.00002 | — fitted function —_~ 10
3 >
g ~
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0.00001 +
10%[
0.00000 L +
3080 3080 3100 3120 3140 ]
j 2 2
y=x/(4bt)"*
FIG. 4. Simulated profile oR,__(x,t) at time 10! (k=0.1,
g=10"%) fitted by f,(y)=2[(x/wo)?+4]%2 f,(y) is proportional FIG. 5. The local rate of productionR, (x,t) (in units ofka3)
to the asymptotic expressid29). Herej is a discrete space step as a function of the nondimensional diffusionlike coordinate
numberR; _(x.t) is in units of 7. x/2\/Dt for values ofg=10"—10"* [computed from Eqs(23) and
. . . . . 30) with valuesk=0.1,a,=1.0, andb,=0.25]. Hereg is in units
dynamics of the reversible reaction-diffusion systein (()f &ao 0 0 ] ¢

+ B« C, with initially separated reactans and B, may be
described as a crossover through three regimes, namely, the 14xing into account the diffusionlike character of Egs.

short-time regime, the long-time irreversible regim_el, and the,9) in the mean-field approximation and the initial condi-
long-time reversible regime. At short timés<t.~k = the iong of Eq.(12), the asymptotic solution of these equations
initially separated reactants and B start to mix[6,9]. The may be presented in the formpa=pa(X/\), p
reaction is not influenced by th®andB profiles and occurs _ G Ao 130 [29]. F A thA f ' '?h

in a region of widthw which is approximately equal to the _PB(X ), an p.C_pC(X ) L ]'. rom these forms the

e . . . universal properties of the reversible regime equatians,
diffusion length ~+/Dat,Dgt. For intermediate timet ~t2 R —t-1 R ~t 12 andx,~t"2, immediately
~t., the direct reactio+ B— C becomes more dominant, oll : _rr'ﬁqa' o ’]g'oba'h d fo |
and for timest>t., long-time asymptotic behavior appears 'I?hOW. "T’ |sdtrue dor the wide reaction ng_e case a;o.
[6,8,12,2]. This state, describing the long-time irreversible ese S%"?‘ﬁe jependencies are lmporr1tant n |9§'|[|ons t at a
regime, is characterized by a relatively small reaction zon&eaction-drliusion system occurs in the reversible regime,

: : _ hich may be used for the analysis of experimental data.
width w<\/Dat,/Dgt. Attimet~t,=g* the backward re- w . . . .
action sets inA, and E1;‘0r timas>t, thre s%/stem converts to the Equations(22) have a simple analytical solution for equal

long-time reversible regimg22]. In Table | the quantities d'ffuisr']?t? fonsr:ani)rAEEB:[;g:rD at?dnarbltr:atryh\{[alﬁgs of
characterizing these regimes in the reaction-diffusion syste ¢ al concentrations a eaction constantand g

are summarized. The data relating to tinggs<1 were taken 9,30
from Ref. [8], taking into account that for these times + o= 058 1— erfix/2<DI
R, (x,t)=~R(x,t). patpc=0.5, ( J—)],
The classification in Table | is valid only it.<t, e = 0.5 1+ erfl x/2Di 20
=g, i.e,, for small values. If g is not sufficiently small Pt pc=0.50 (x/2\DY)], (30

and t.~t, the irreversible regime has not enough time to
appear; therefore for long times-t.,t,, the system trans-
forms to the reversible regime directly, bypassing the irredn Fig. 5 the change oR, with varying g from the thin
versible regime. In this case the quasiequilibrium expressioneaction zone state to the wide reaction zone state is illus-
kpa(X,t) pe(X,t) =gpc(X,t) is valid and the system may be trated on the basis of Eq&0) and (23).

described by Eqg22) also. Thus, the reversible regime with  Our approach, by which the reversible reaction regime
large reaction widthw~ /D t,\/Dgt is described by Eqs. A+B«C was considered, may be applied in an analogous
(22). manner to other reactions such asA+nB—C or mA

Kpape=9pc -

TABLE I. The reaction front properties of the crossover in the initially separated revessibR«— C
reaction-diffusion system.

Short-time Long-time Long-time
regime irreversible regime reversible regime
Quantity Notation t<t.~k™?! gt<1 gt>1
Global rate Rr ool 1?2 t~12 t=12
Center of front X¢(t) nonuniversal t1? t1?
Width of front w(t) t1? /e t1?

Local rate atxs Rr Xt 1) constant t—23 -1
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+nB—pC+qD and can be generalized to an arbitrary num-g, w~ +'tg?, (b) the use of the refined expressiéh=R
ber of such components and reversible reacti@3% Taking  —gpc for calculation of the reaction rate, aic) the quasi-
into account that the macroscopic characteristics of thetatic equation$24), which take into account the local equi-
reaction-diffusion system in the irreversible regime coincidelibrium relationR=gp¢.
with those of the reversible regime, the equations of the re- (3) In the framework of the generalized assumptions,
versible regime and their solutiofi the thin reaction zone Which can be tested experimentally or by computation, it was
limit) can conveniently be used for analysis of the irreversfound that the macroscopic properties of the reaction front
ible regime dynamics. for g—0, t—« are conserved not only in the limiting re-
gimesgt<1 andgt>1, but also at all times through the
crossover from the irreversible regime to the reversible re-
gime. In other words, the same analytical expressions can be
The diffusion-reaction system\+ B« C with initially used for arbitrary values ajt. The first important conjecture
separated reactants was investigated for arbitrary nonzeiwere relates to the type of the dependeweew(t,g). Two
values of the diffusion constanf3,, Dz, and D¢ of the  regions of the functiorw(t,g) are linked monotonically at
components\, B, andC and the initial concentratiors, and  gt~1: w~t® at timesgt<1 andw~ \tg? at timesgt
by of A andB, respectively. The results of the investigation > 1. The second important result is the use of the quasistaic
are the following. equations for describing the reaction-diffusion system inside
(1) It was found that fog—0, t—o0, and arbitrary values the reaction zone.
of gt the concentration profile o outside the reaction zone (4) Numerical computation of the mean-field equations
for nonzero values dD . may be described by the analytical confirms the assumed dependencewsfw(t,g) and the
expressiong14) and(15). properties of the crossover from the irreversible to the re-
(2) It was found that fog—0, t—o, the reversible re- versible regime.
gimegt>1 is characterized by the same macroscopic prop- (5) It is shown that within the framework of the mean-
erties as the irreversible regingg<<1. Moreover, the ana- field equations for sufficiently large values gifthe irrevers-
lytical expressions for the concentration profiles outside thable regime is not achieved, and the reaction-diffusion sys-
reaction zone, the global rate 6fproduction, and the law of tem has a crossover from the short-time regirxe ~k 1
motion of the reaction zone center coincide with those in thalirectly to the long-time reversible regime>g~* with a
irreversible regime. All these are true if some of the naturawide reaction zone. The general properties of the reversible
assumptions are valid. The important assumptiongairtie  regime, such aR,(x;,t)~t"%, R (t)~t"¥2 x;~t'? and
dependence of the reaction zone width on tiraed constant w~t'2, are maintained also.

V. SUMMARY
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